Rough set based maximum relevance-maximum significance criterion and Gene selection from microarray data
نویسندگان
چکیده
منابع مشابه
A New Maximum-Relevance Criterion for Significant Gene Selection
Gene (feature) selection has been an active research area in microarray analysis. Max-Relevance is one of the criteria which has been broadly used to find features largely correlated to the target class. However, most approximation methods for Max-Relevance do not consider joint effect of features on the target class. We propose a new MaxRelevance criterion which combines the collective impact ...
متن کاملRobust and stable gene selection via Maximum-Minimum Correntropy Criterion.
One of the central challenges in cancer research is identifying significant genes among thousands of others on a microarray. Since preventing outbreak and progression of cancer is the ultimate goal in bioinformatics and computational biology, detection of genes that are most involved is vital and crucial. In this article, we propose a Maximum-Minimum Correntropy Criterion (MMCC) approach for se...
متن کاملGene Regulatory Network Inferences Using a Maximum-Relevance and Maximum-Significance Strategy
Recovering gene regulatory networks from expression data is a challenging problem in systems biology that provides valuable information on the regulatory mechanisms of cells. A number of algorithms based on computational models are currently used to recover network topology. However, most of these algorithms have limitations. For example, many models tend to be complicated because of the "large...
متن کاملGene Identification from Microarray Data for Diagnosis of Acute Myeloid and Lymphoblastic Leukemia Using a Sparse Gene Selection Method
Background: Microarray experiments can simultaneously determine the expression of thousands of genes. Identification of potential genes from microarray data for diagnosis of cancer is important. This study aimed to identify genes for the diagnosis of acute myeloid and lymphoblastic leukemia using a sparse feature selection method. Materials and Methods: In this descriptive study, the expressio...
متن کاملLocal Relevance Weighted Maximum Margin Criterion for Text Classification
Text classification is a very important task in information retrieval and data mining. In vector space model (VSM), document is represented as a high dimensional vector, and a feature extraction phase is usually needed to reduce the dimensionality of the document. In this paper, we propose a feature extraction method, named Local Relevance Weighted Maximum Margin Criterion (LRWMMC). It aims to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Approximate Reasoning
سال: 2011
ISSN: 0888-613X
DOI: 10.1016/j.ijar.2010.09.006